skip to main content


Search for: All records

Creators/Authors contains: "Ganzeveld, Laurens"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dry deposition to the surface is one of the main removal pathways of tropospheric ozone (O3). We quantified for the first time the impact of O3 deposition to the Arctic sea ice on the planetary boundary layer (PBL) O3 concentration and budget using year-round flux and concentration observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign and simulations with a single-column atmospheric chemistry and meteorological model (SCM). Based on eddy-covariance O3 surface flux observations, we find a median surface resistance on the order of 20,000 s m−1, resulting in a dry deposition velocity of approximately 0.005 cm s−1. This surface resistance is up to an order of magnitude larger than traditionally used values in many atmospheric chemistry and transport models. The SCM is able to accurately represent the yearly cycle, with maxima above 40 ppb in the winter and minima around 15 ppb at the end of summer. However, the observed springtime ozone depletion events are not captured by the SCM. In winter, the modelled PBL O3 budget is governed by dry deposition at the surface mostly compensated by downward turbulent transport of O3 towards the surface. Advection, which is accounted for implicitly by nudging to reanalysis data, poses a substantial, mostly negative, contribution to the simulated PBL O3 budget in summer. During episodes with low wind speed (<5 m s−1) and shallow PBL (<50 m), the 7-day mean dry deposition removal rate can reach up to 1.0 ppb h−1. Our study highlights the importance of an accurate description of dry deposition to Arctic sea ice in models to quantify the current and future O3 sink in the Arctic, impacting the tropospheric O3 budget, which has been modified in the last century largely due to anthropogenic activities. 
    more » « less
  2. null (Ed.)
    Abstract. During the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) campaign from 21 July to 3 August 2016,field experiments on leaf-level trace gas exchange of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) were conducted for thefirst time on the native American tree species Pinus strobus (eastern white pine), Acer rubrum (redmaple), Populus grandidentata (bigtooth aspen), and Quercus rubra (red oak) in a temperate hardwood forest inMichigan, USA. We measured the leaf-level trace gas exchange rates andinvestigated the existence of an NO2 compensation point, hypothesizedbased on a comparison of a previously observed average diurnal cycle ofNOx (NO2+NO) concentrations with that simulated using amulti-layer canopy exchange model. Known amounts of trace gases wereintroduced into a tree branch enclosure and a paired blank referenceenclosure. The trace gas concentrations before and after the enclosures weremeasured, as well as the enclosed leaf area (single-sided) and gas flow rate to obtain the trace gas fluxes with respect to leaf surface. There was nodetectable NO uptake for all tree types. The foliar NO2 and O3uptake largely followed a diurnal cycle, correlating with that of the leafstomatal conductance. NO2 and O3 fluxes were driven by theirconcentration gradient from ambient to leaf internal space. The NO2 loss rate at the leaf surface, equivalently the foliar NO2 deposition velocity toward the leaf surface, ranged from 0 to 3.6 mm s−1 for bigtooth aspen and from 0 to 0.76 mm s−1 for red oak, both of which are∼90 % of the expected values based on the stomatalconductance of water. The deposition velocities for red maple and white pineranged from 0.3 to 1.6 and from 0.01 to 1.1 mm s−1, respectively, and were lower than predicted from the stomatal conductance, implying amesophyll resistance to the uptake. Additionally, for white pine, theextrapolated velocity at zero stomatal conductance was 0.4±0.08 mm s−1, indicating a non-stomatal uptake pathway. The NO2compensation point was ≤60 ppt for all four tree species andindistinguishable from zero at the 95 % confidence level. This agrees withrecent reports for several European and California tree species butcontradicts some earlier experimental results where the compensation pointswere found to be on the order of 1 ppb or higher. Given that the sampledtree types represent 80 %–90 % of the total leaf area at this site, theseresults negate the previously hypothesized important role of a leaf-scaleNO2 compensation point. Consequently, to reconcile these findings,further detailed comparisons between the observed and simulated in- and above-canopy NOx concentrations and the leaf- and canopy-scaleNOx fluxes, using the multi-layer canopy exchange model withconsideration of the leaf-scale NOx deposition velocities as well asstomatal conductances reported here, are recommended. 
    more » « less
  3. With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
    more » « less